X-ray imaging with a significantly enhanced resolution

Symbolic picture for the article. The link opens the image in a large view.
Image: Anton Classen

FAU physicists have developed a new technique for determining molecular structure

Physicists from FAU and Deutsches Elektronen-Synchrotron (DESY, Hamburg) have come up with a method that could significantly improve the quality of X-ray images in comparison to conventional methods. Incoherent diffractive imaging (IDI) could help to image individual atoms in nanocrystals or molecules faster and with a much higher resolution. Their results were recently published in the renowned journal Physical Review Letters.*

For more than 100 years, X-rays have been used in crystallography to determine the structure of molecules. At the heart of the method are the principles of diffraction and superposition, to which all waves are subject: Light waves consisting of photons are deflected by the atoms in the crystal and overlap – like water waves generated by obstacles in a slowly flowing stream. If a sufficient number of these photons can be measured with a detector, a characteristic diffraction pattern or wave pattern is obtained from which the atomic structure of the crystal can be derived. This requires that photons are scattered coherently, meaning that there is a clear phase relationship between incident and reflected photons. To stay with the water analogy, this corresponds to water waves that are deflected from the obstacles without vortexes or turbulences. If photon scattering is incoherent, the fixed phase relationship between the scattered photons disperses which makes it impossible to determine the arrangement of the atoms – just like in turbulent waters.

Coherent imaging has some shortcomings

But coherent diffractive imaging also has a problem: ‘With X-ray light, in most cases incoherent scattering dominates, for example in the form of fluorescence resulting from photon absorption and subsequent emission,’ explains Anton Classen, member of the FAU working group Quantum Optics and Quantum Information. ‘This creates a diffuse background that cannot be used for coherent imaging and reduces the reproduction fidelity of coherent methods.’

Making use of incoherent radiation

It is exactly this seemingly undesirable incoherent radiation that is key to the FAU researchers’ novel imaging technique. ‘In our method, the incoherently scattered X-ray photons are not recorded over a longer period of time, but in time-resolved short snapshots,’ explains Professor Joachim von Zanthier. ‘When analysing the snapshots individually, the information about the arrangement of the atoms can be obtained.’ The trick is that the light diffraction is still coherent within short sequences. However, this is only possible with extremely short X-ray flashes with durations of no more than a few femtoseconds – that is, a few quadrillionths of a second – which has only been achieved recently using free-electron lasers like the European XFEL in Hamburg or the Linac Coherent Light Source (LCLS) in California.

Visualising single molecules is possible

Since the new method uses fluorescence light, a much stronger signal than before can be obtained, which is also scattered to significantly larger angles gaining more detailed spatial information. In addition, filters can be used to measure the light of specific atomic species only. This makes it possible to determine the position of individual atoms in molecules and proteins with a significantly higher resolution compared to coherent imaging using X-ray light of the same wavelength. This method could give new impetus to the study of proteins in structural biology and medicine.

*doi: 10.1103/PhysRevLett.119.053401

The study results have been published in the renowned journal Physical Review Letters with the title ‘Incoherent Diffractive Imaging via Intensity Correlations of hard X-rays’.

Further information:

Prof. Dr. Joachim von Zanthier
Phone: +49 9131 8527603
joachim.vonzanthier@physik.uni-erlangen.de